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Semi-Infinite Disordered Media
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peaked at pmin = µ + 1, but presents a whole spectrum
of cycles with period p ≥ pmin, with possible power-law
decay [11, 12, 13]. These cycles have been used as a
clusterization method [14] and in image texture analy-
sis [15, 16].

It is interesting to point out that, for 1D systems, de-
terminism imposes serious restrictions. For any µ value,
cycles of period 2µ + 1 ≤ p ≤ 2µ + 3 are forbidden. Ad-
ditionally, for µ = 2 all odd periods but pmin = 3 are
forbidden. Also, the heavy tail of the period marginal

distribution S(N)
µ,1 (p) =

∑

t S(N)
µ,1 (t, p) may lead to often-

visited-large-period cycles [11]. This allows system ex-
ploration even for small memory values (µ # N).

The article presentation is divided as follows. In
Sec. II, we consider a walker moving according to the de-
terministic tourist rule in semi-infinite disordered media.
Firstly, we calculate exactly the distribution of visited
points, which allowed us to jusfify a very good approxi-
mation using a simple mean field argument. Secondly, we
propose an alternative exact derivation for this distribu-
tion using the exploration and return probabilities, which
allows application in the tourist walk in finite disordered
media. This is done in Sec. III, where we obtain the per-
colation probability and show the existence of a crossover
in the walker’s exploratory behavior at a critical mem-
ory µ1 = lnN/ ln 2 in a narrow memory range of width
ε = e/ ln 2. This crossover splits the walker’s behavior
in essentially two regimes. For µ < µ1 − ε/2, the walker
gets trapped in cycles and for µ > µ1 + ε/2, the walker
visits all the points. The calculated quantities have been
validated by Monte Carlo simulations. The fact that to
explore the whole disordered medium the walker need to
have only a small memory (of order log2 N) and other
final remarks are presented in Sec. IV.

II. SEMI-INFINITE DISORDERED MEDIA

A random static semi-infinite medium is constructed
by uncountable points that are randomly and uniformly
distributed along a semi-infinite line segment with a
mean density r. The upper line segment of Fig. 1 rep-
resents this medium, where the distances xk between
consecutive points are independent and identically dis-
tributed (iid) variables with exponential probability den-
sity function (pdf): g(x) = re−rx, for x ≥ 0 and g(x) = 0,
otherwise. In the following we analytically obtain the
statistics related to deterministic tourist walk performed
on semi-infinite random media.

A. Distribution of the number of visited points

Here we obtain analytically the probability S(∞)
µ,si (n) for

a walker, with memory µ and moving according to the
deterministic tourist rule, to visit n points of semi-infinite
media. The exact result is obtained and this allowed us
to justify a simple mean field approach.

FIG. 1: Scheme showing the equivalence between a finite and
a semi-infinite disordered media. Along the upper line seg-
ment the points are generated using the random distances xk

with exponential pdf. In the lower line segment, the number
of points (N) is fixed and normalized to its total length, where
zk are the normalized coordinates.

1. Exact Result

Consider a walker who leaves from the leftmost point
s1, placed at the origin of the upper line segment of Fig. 1.
The conditions for the walker to visit n ≥ µ + 1 distinct
points are:

1. the distances x1, x2, . . . , xµ may assume any value
in the interval [0;∞), since the memory µ prohibits
the walker to move backwards in the first µ steps,
so that the first µ + 1 points are indeed visited,

2. each of the following distances xµ+1, xµ+2, . . . ,
xn−1 must be smaller than the sum of the µ pre-
ceding step distances, until the tourist reaches the
point sn, and

3. the distance xn must be greater than the sum of
the µ preceding ones, to enforce the walker to move
back to the point sn−µ, instead of exploring a new
point sn+1.

Once the walker has returned to the point sn−µ, he/she
may revisit the starting point s1, get trapped in a attrator
or even revisit the point sn, but he/she will not be able
to transpose the distance barrier xn between the points
sn and sn+1. Actually, no new points will be visited any
longer. Combining these conditions, the probability for
the walker to visit n distinct points is

S(∞)
µ,si (n) =

µ
∏

j=1

∫ ∞

0
dxj re−rxj

n−1
∏

j=µ+1

∫

∑j−1

k=j−µ
xk

0
dxj re−rxj

∫ ∞

∑

n−1

k=n−µ
xk

dxn re−rxn . (1)

The difficulty to obtain S(∞)
µ,si (n) is that the n intregrals

are chained and the integration procedure must start
from the rightmost factor. Applying the substitutions

g(x) =






re−rx for x ≥ 0

0 for x < 0
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Probability to Visit n Points

3

S(∞)
µ,si (n) =

µ∏

j=1

∫ ∞

0
dxj re−rxj

n−1∏

j=µ+1

∫ Pj−1
k=j−µ xk

0
dxj re−rxj

∫ ∞

Pn−1
k=n−µ xk

dxn re−rxn
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Recursive Calculation
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Ij =






∫ 1
0 dyj for 1 ≤ j ≤ µ

∫ 1
ỹj

dyj for µ + 1 ≤ j ≤ n− 1

∫ ỹj

0 dyj for j = n

yj = e−rxj

S(∞)
µ,si (n) =

∏n
j=1 Ij
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Probability Distribution of ne for Varying μ
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FIG. 2: Calculation scheme for the chained integrals of Eq. 2.
Here we have considered the example of µ = 3 and n = 7. We
focus on the dynamics of the powers of y’s along the bifurca-
tion path, which leads to the recursive relation (Eq. 5).

FIG. 3: Distribution of ne for µ varying from 1 to 9. Contin-
uous lines refer to exact form of Eq. 4 and dotted lines refer
to approximated form of Eq. 8.

To fully appreaciate this mean field argumentation
consider first the distribution of a product of uniform
deviates. Let y1, y2, . . . , yµ be µ independent random
variables uniformly distributed on the interval (0, 1]. To
obtain the pdf p(ỹ) of the product ỹ =

∏µ
k=1 yk, let

us apply the transformation w̃ = − ln ỹ =
∑µ

k=1 wk,
where wk = − ln yk with 1 ≤ k ≤ µ are iid variables
with exponential pdf of unitary mean. Thus, the sum
w̃ follows a gamma pdf p(w̃) = w̃µ−1e−w̃/Γ(µ). Since
|p(ỹ)dỹ| = |p(w̃)dw̃| one obtains the distribution of ỹ:
p(ỹ) = (− ln ỹ)µ−1/Γ(µ), whose the mth moment is
〈ỹm〉 = (m + 1)−µ.

The above tools can be used due to the fact that all the

variables yj = e−rxj (applyed to Eq. 1) are iid according
to a uniform deviate in the interval (0, 1]. The first con-
dition (0 ≤ j ≤ µ) of Eq. 3 states that the variables y1,
y2, . . . , yµ may freely vary from 0 to 1. Once for µ % 1
the product ỹµ+1 =

∏µ
k=1 yk has a small variance, it can

be approximated by its mean value 〈ỹµ+1〉 = 2−µ.

Concerning the next product ỹµ+2 =
∏µ+1

k=2 yk, the
variables y2, y3, . . . , yµ+1 are not all iid, because yµ+1 has
just been constrained to the interval [2−µ, 1]. However,
for µ % 1, the interval [2−µ, 1] becomes close to [0, 1], al-
lowing ỹµ+2 to be also approximated by the mean value
2−µ. This reasoning can be indutively applied for the
remaining integration limits ỹj . Thus, Eq. 3 is approxi-
mated to

Ij ≈



































∫ 1
0 dyj , for 0 ≤ j ≤ µ

∫ 1
2−µ dyj , for µ + 1 ≤ j ≤ n − 1

∫ 2−µ

0 dyj , for j = n

. (7)

Observe that these integrals are no longer chained and

that S(∞)
µ,si (n) is still given by Eq. 2, which leads to

S(∞)
µ,si (n) ≈ 2−µ(1 − 2−µ)n−µ−1 , (8)

with n = µ + 1, µ + 2, . . . ,∞ and yields E(n) = 2µ + µ,
which may be interpreted as the characteristic range of
the walk, and Var(n) = 22µ − 2µ. Dotted lines in Fig. 3
represent this approximation for 1 ≤ µ ≤ 9.

B. Exploration and return probabilities

The purpose of the calculation of the exploration and
return probabilities is twofold. It is an alternative argu-
mentation to obtain Eq. 8 and these probabilities lead to
simple arguments to obtain the percolation probability
for a finite disordered.

1. Upper tail cumulative probability: an exact calculation

A similar argumentation used to obtain Eq. 4 may be
used to obtain the upper tail cummulative distribution

F
(∞)
µ,si(n) =

∑∞
k=n S(∞)

µ,si (k). This distribution gives the
probability for the walker to visit at least n points. The
only modification is that, once the walker has reached the
point sn, he/she can either move backwards or forwards.
Therefore, the rightmost integral of Eq. 1 is no longer
necessary, so

F
(∞)
µ,si(n) =

n−1
∏

j=1

Ij , (9)

5ne = n− (µ + 1)
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Mean Field Approach
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p(w̃) = w̃µ−1e−w̃

Γ(µ)

ỹ =
∏µ

k=1 yk

w̃ = − ln ỹ =
∑µ

k=1 wk

|p(ỹ)dỹ| = |p(w̃)dw̃|

p(ỹ) = (− ln ỹ)µ−1

Γ(µ)

〈ỹm〉 = (m + 1)−µ
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Mean Field Solution
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〈n〉 = 2µ + µ

Ij ≈






∫ 1
0 dyj , for 0 ≤ j ≤ µ

∫ 1
2−µ dyj , for µ + 1 ≤ j ≤ n− 1

∫ 2−µ

0 dyj , for j = n

S(∞)
µ,si (n) ≈ 2−µ(1− 2−µ)n−µ−1

∆n =
√

22µ − 2µ
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Nomenclature
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F
(∞)
µ,si(n) =

∑∞
k=n S(∞)

µ,si (k)

F
(∞)
µ,si(n) ≈ (1− 2−µ)n−µ−1

pµ(j) = S(∞)
µ,si(n=µ+j)

F
(∞)
µ,si(n=µ+j)

≈ 1
2µ

qµ(j) ≈ 1− 2−µ
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Return Probabilities for Varying μ 5

where each functional Ij is given by Eq. 3. The root node
of Fig. 2 is now set to 1 (or, equivalently, y0

4y
0
5y

0
6), which

leads to

F
(∞)
µ,si(n) = fµ[n,!0] , n = µ + 1, µ + 2, . . . ,∞ , (10)

where !0 = (0, 0, . . . , 0) is the µ-dimensional null vector

and fµ is given by Eq. 5. Observe that F
(∞)
µ,si(n) uses the

same recursive structure of Eq. 4, but with a different
initial condition (!0 instead of !1). If the approximation
of Eq. 7 is used as approximation to evaluate Eq. 9, one
readily has

F
(∞)
µ,si(n) ≈ (1 − 2−µ)n−µ−1 . (11)

The memory µ assures the walker, leaving from the
point s1, to move forward in the first µ steps. In con-
strast, the following steps are uncertain, since the walker
may either move forwards and visit a new point or return
and stop the medium exploration. In analogy to the geo-
metric distribution, it is useful to define the exploration
probability qµ(j) (taken as failure) as the probability for
the walker to visit a new point at the jth uncertain step.

Therefore, the return probability pµ(j) (taken as suc-
cess) for the jth uncertain step is equal the probability for
the walker to visit exactly n = µ+j points conditionated
to the fact that he/she has already visited n = µ + j − 1
points. This probability is given by

pµ(j) =
S(∞)

µ,si (n = µ + j)

F
(∞)
µ,si(n = µ + j)

=
fµ[µ + j,!1]

fµ[µ + j,!0]
, (12)

where fµ is given by Eq. 4.
Fig. 4 shows the behavior of pµ(j) for the first 30 un-

certain steps, with µ varying from 1 to 9. One can ob-
serve that for µ $ 1 the return probability pµ(j) along
the walk is almost constant and equal its initial value
pµ(1) = 2−µ. In this way, one can verify empirically
that for µ $ 1 the return probabilities can be taken as
pµ = 2−µ for all steps, as well as qµ = 1 − 2−µ can be
taken for all exploration probabilities.

This empirical approximation for the return probabil-
ity can justified analytically using Eqs. 8 and 11 in its
definition:

pµ(j) =
S(∞)

µ,si (n = µ + j)

F
(∞)
µ,si(n = µ + j)

≈
1

2µ
, (13)

For µ = 1, ne is numerically equal to the transient
time t (what does not mean that they are the same part
of the trajectory, the transient is the beginning of it and
ne counts the final points), and in this case Eqs. 4, 10

and 12 assume the simple exact closed forms S(∞)
1,si (ne) =

(ne + 1)/(ne + 2)!, F
(∞)
1,si (ne) = 1/(ne + 1)! and p1(j) =

j/(j + 1), which have been previously found in Ref. [10].

FIG. 4: Return probability given by Eq. 12, with µ varying
from 1 to 9.

2. An alternative derivation

These approximated expressions for exploration and
return probabilities can also be obtained by analytical
means through a more direct derivation. Consider again
the tourist dynamics with a walker who leaves from the
point s1, placed at the origin of the semi-infinte medium.

The first µ + 1 points are indeed visited, because the
memory µ prohibits the walker to return. Thus, the dis-
tances x1, x2, . . . , xµ may assume any value in the in-
terval [0,∞).

The exploration probability qµ(1) for the first uncer-
tain step can be obtained imposing that the distance
xµ+1 must be smaller than the sum x̃1 =

∑µ
k=1 xk.

Since the variables x1, x2, . . . , xµ are iid with ex-
ponential pdf, x̃1 has a gamma pdf. Hence qµ(1) =
[
∫ ∞

0 dx̃1rµx̃µ−1
1 e−rx̃1/Γ(µ)]

∫ y1

0 dxµ+1re−rxµ+1 = 1 −
2−µ.

The exploration probability qµ(2) for the second uncer-
tain step is not exactly equal to qµ(1). Once the distance
xµ+1 must vary in the interval [0, x̃1], the variables x2,
x3, . . . , xµ+1 are not all independent, and consequently

x̃2 =
∑µ+1

k=2 xk has not exactly a gamma pdf. However,
for µ $ 1, xµ+1 rarely exceeds x̃1 [this probability is just
P (xµ+1 > x̃1) = 1 − qµ(1) = 2−µ, meaning that a weak
correlation is present for µ $ 1]. Therefore, one can
make an approximation assuming that x̃2 still follows a
gamma pdf and considering qµ(2) ≈ qµ(1). The same
argumentation can be used for the succeeding steps.

When the point sn is reached, the walker must turn
back, stopping the medium exploration. Once qµ(1) is
taken for all qµ, the return probability is pµ = 1 − qµ =

2−µ and one has: S(∞)
µ,si (ne) = 2−µ(1 − 2−µ)ne , which is

the result of Eq. 8.

9
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Analytical Solution for μ=1
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S(∞)
1,si (ne) = ne+1

(ne+2)!

F
(∞)
1,si (ne) = 1

(ne+1)!

p1(j) = j
j+1
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Percolation Probability
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PN (µ) = qN−(µ+1)
µ = (1− 2−µ)N−µ−1

d2
µPN (µ)|µc

1
= 0

µc
1 = log2 N

ε = e
ln 2 ≈ 3.92
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Percolation Probabilities for Fixed N
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III. PERCOLATION PROBABILITY FOR
FINITE DISORDERED MEDIA

The finite disordered medium is constructed by N
points whose coordinates zk are randomly generated in
the interval [0, 1] following a uniform deviate as depicted
in Fig. 1.

Numerical simulation results pointed out that the
exploration and return probabilities obtained for the
semi-infinite medium may also be applied to this finite
medium. This is not trivial, since all results for the semi-
infinite medium have been obtained assuming that the
distances between consecutive points are iid variables
with exponential distribution. Obviously the distances
between consecutive points in the finite medium are not
iid variables, nor have exponential distribution.

Nevertheless, the equivalence between these two media
can be argued as follows. The abscissas of the ranked
points in the finite medium follow a beta pdf [17]. If
one restricts the semi-infinite medium length to the first
N + 1 distances and normalizes it to fit in the interval
[0, 1], then the abscissa of its kth ranked point is zk =
Uk/(Uk + Vk), where Uk = x1 + x2 + · · · + xk and Vk =
xk+1 + xk+2 + · · · + xN+1. Fig. 1 shows an example for
N = 7 normalization.

This normalization does not affect the tourist walk,
because in this walk only the neighborhood ranking is
relevant, not the distances themselves [11, 13]. Since Uk

and Vk have gamma pdf, zk has beta pdf [17], as in the
genuine finite medium.

The probability PN (µ) for the exploration of the whole
N -point medium can be derived noticing that the walker
must move forward N−(µ+1) uncertain steps and, when
the last point sN is reached, there is no need to impose
a return step. Therefore the percolation probability is

PN (µ) = qN−(µ+1)
µ =

(

1 − 2−µ
)N−µ−1

. (14)

It is interesting to point out that the percolation proba-
bility relates directly to the upper tail cummulative func-
tion as seen by Eq. 11. The diference between them is
only on in the interpretation of the number of visited
points N , but this can be justified because of the nor-
malization to the finite medium discussed above.

Fig. 5 shows a comparison of the evaluation of Eq. 14
and the results of Monte Carlo simulations. From this
figure one clearly sees that the probability of full explo-
ration increases abruptly from almost 0 to almost 1.

From the analogy with a first order phase transi-
tion, we define the crossover point as the maximum
of the derivative of PN (µ), with respect µ. This im-
plies that the second derivative vanishes at the maxi-
mum d2

µPN (µ)|
µ

(c)
1

= 0, leading to a transcental equa-

tion which cannot be solved it analytically to obtain µ(c)
1 .

An estimation value of µ(c)
1 can be calculated consider-

ing N " µ " 1 and Eq. 14 may be approximated to
PN (µ) = (1 − 2−µ)N , and at inflexion point, one has

µ1 = log2 N . (15)

A simple interpretation can be given to µ1. It is just the
number of necessary bits to represent the system size N .
To evaluate the width of the crossover region, use the
slope of PN (µ) at µ1, which results to ln 2/e, for all N
[see Fig. 5]. The crossover region has a constant width

ε =
e

ln 2
≈ 3.92 . (16)

In one hand, as N increases, the critical memory slowly
increases (as log2 N) but its deviation is independent of
the system size, so that a sharp crossover is found in the
thermodynamic limit (N " 1). We stress that the ap-
proximations employed lead to satisfactory results even
for small N and µ values.

FIG. 5: Percolation probability for some fixed N values.
Empty circles are given by Eq. 14 and full ones represent
numerical simulations (M = 100 000 maps for each N and µ
values), error bars are smaller than symbol size. Continuous
lines are plotted only to guide eyes. Analytical results are
satisfactory, when compared to numerical simulation, even
for small N and µ values. The crossover points µ1 are given
by Eq. 15, which are weakly dependent on N but all of them
have the same constant dispersion ε ∼ 4 (Eq. 16).

On the other hand, if one use the reduced memory
µ̃ = (µ−µ1)/µ1, the crossover occurs in µ̃1 = 0, but now
the crossover width depends on the size of the system as
1/ log2 N .

IV. CONCLUSION

Our main result is that to explore the whole medium
the walker does not need to have memory of order N , a
small memory (of order lnN) allows this full exploration.

All the exact results calculated here are in accordance
to the limiting case µ = 1 obtained in Ref. [10]. Also,
they can be applied to an infinite line segment, where

12


