

Finite Lattice Tiles and Scaling Results with DCA and Lanczos

The Spin ½ XY Model Studied via. Exact Diagonalization using the Lanczos Algorithm

The Spin ½ Heisenberg Model Studied via. Exact Diagonalization using the Lanczos Algorithm

The Hubbard Model

Studied via. Dynamic Cluster Approximation using the Hirsh-Fye Impurity Algorithm

Finite Scaling Concerns Motivation for Grading Tiles

Finite Lattice Generation

Poor Tiles

Grading Criteria for Tiles

Grading Criteria for Tiles Symmetry

Grading Criteria for Tiles Cubicity

$$l = (l_1 l_2 l_3)^{1/3}$$

$$d = (d_1 d_2 d_3 d_4)^{1/4}$$

$$f = (f_1 f_2 f_3 f_4 f_5 f_6)^{1/6}$$

$$c_1 = \frac{3^{1/2} l}{d}$$

$$c_2 = \frac{2^{1/2} l}{f}$$

 $C = max(c_1, c_1^{-1})max(c_2, c_2^{-1})$

Lattice Grades

			Pro	Property that deviates	
Lattice	S	J	ϵ_{o}^{XY}	m_x^{XY}	ϵ_{o}^{HA}
8A	$C_{2\mathrm{h}}$	1	А	В	
10A	$C_{ m i}$	0	A^-	B^+	
12A	$C_{2\mathrm{h}}$	0	A^+	B+	
12B	$C_{2\mathrm{h}}$	0	B^+	A^-	
14A	C_{3i}	0	B^+	В	A^-
14B	$C_{\rm i}$	0	B^+	А	
14C	$C_{\rm i}$	0	A^-	B^+	
16A*	$O_{\rm h}$	0	B^+	B^+	A^-
16B*	D_{2h}	0	B^+	B^+	A^-
16C*	D_{2h}	0	B^+	B^+	A^{-}
16D	C_{2h}	0	B+	B+	A^-
16E	C_{2h}	0	A^+	B+	
16F	C_{2h}	1	В	B^+	
18A*	D_{3h}^{2h}	0	A^-	A^-	A^{-}
18B*	C_{3i}	0	A^-	A^-	A^{-}
18C	C_{i}	0	B^+	B+	A^{-}
18D	C_{2h}	0	B^+	B+	
18E	C_{2h}	0	А	B+	
18F	C_{2h}^{2h}	2	В	B+	
20A	C_{i}	0	A^-	A^-	A^{-}
20B*	C_{i}	0	A ⁻	B ⁺	A ⁻
20C*	C_{i}	0	A^-	B+	A^{-}
20D*	C_{i}	0	A^-	B+	A-
20E	C_{2h}	0	A ⁺	А	B ⁺
20F	C_{2h}	0	A ⁻	A ⁺	-
20G	C_{2h}	1	B ⁺	B ⁺	
22A	C_{i}	0			B+
22B	C_{i}	2	A ⁻		B ⁺
22C	C_{i}	0	A	A-	-
22D	C_1	0	B ⁺	B ⁺	
22E	C_1	2	B+	B+	
24A	C_{2}	2	A	A-	A+
24B	D_{2h}	2	A ⁻	A ⁻	A+
24C	C_{3h}	0	A-	R ⁺	A-
24D	D_{2}	4	A-	A	11
24E	C_{2h}	0	R+	R ⁺	
26A	C_{2h}	2	Д+	Д- Д-	Δ^{-}
26R	C_1	0	Δ^{-}	R+	Δ^{-}
260	C_{3i}	0	R+	B ⁺	п
200	U _i	0	D	D	

* Thefin itelattices in this set aretop ologically identical.

Tile Comparisons The Spin ¹/₂ XY Model

Tile Comparisons The Spin ¹/₂ Heisenberg Model

Tile Comparisons The Hubbard Model

Comparison with Outside Results

$-\epsilon_0(\infty)$	$m^+(\infty)$	Method	Ref.
0.6657(4)	-	Variational	32
0.6638	_	Variational	33
0.66968	0.31	Coupled cluster	34
0.66934(3)	0.3075(25)	Quantum Monte Carlo	35,36
0.669437(5)	0.3070(3)	Series expansion quantum Monte Carlo	37
0.669 442(26)	0.3077(4)	Green function Monte Carlo	38
0.66999	0.3069	Third-order spin wave	39
0.66949	0.30686(10)	Fourth-order spin wave	40
0.668(1)	0.33(3)	t expansion	41
0.6696(3)	0.303(8)	Series expansion	42
0.6693(1)	0.307(1)	Series expansion	43
0.669(1)	0.325	Exact diagonalization on finite lattices	19
0.6513(8)	0.20(1)		15
0.66960(14)	0.302(10)		Present estimates

References

- I. "Estimation of zero-temperature properties of quantum spin systems on the simple cubic lattice via exact diagonalization on finite lattices"
 D. D. Betts and G. E. Stewart, Can. J. Phys. 75, 47-66 (1997)
- "Improved finite-lattice estimates of the properties of two quantum spin models on the infinite square lattice"
 D. D. Betts, H. Q. Lin, and J. S. Flynn, Can. J. Phys. 77, 353-369 (1999)
- 3. "Efficient calculation of the antiferromagnetic phase diagram of the 3D Hubbard model"
 - P. R. C. Kent, M. Jarrell, T.A. Maier, and Th. Pruschke, Phy. Rev. B 72 (2005)