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Finite Lattice Tiles and Scaling
Results with DCA and Lanczos
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The Spin ½ XY Model
Studied via. Exact Diagonalization using the Lanczos Algorithm
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The Spin ½ Heisenberg Model
Studied via. Exact Diagonalization using the Lanczos Algorithm
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The Hubbard Model	
Studied via. Dynamic Cluster Approximation using the Hirsh-Fye Impurity Algorithm
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Finite Scaling Concerns
Motivation for Grading Tiles

5

If a further term is needed in fitting the finite-lattice data, the appropriate power of L has to be
determined�via�ana lysis of�the data.

5.1. The XY ferromagnet

A least-squares regression was performed on each set of our data. It quickly became apparent that the
finite-lattice energies for the XY ferromagnet followed two different trends, for even N and odd N,
respectively, although both trends seemed to be leading to the same !o

XY("). Accordingly we used a five
parameter fit�in�this case,

#!o
e (N) = #!o

XY(") + A4
eN # 4/3 + A6

eN # 2 (5.4a)

for�eve n N, and

#!o
o (N) = #!o

XY(") + A4
oN # 4/3 + A6

oN # 2 (5.4b)

for�odd N.

The results�of the best�fi t�to�the energy data, including the standard�errors, are�listed in Table 3. The
best fit pair of curves and the finite-lattice energies to which the curves were fitted are also displayed in
Fig. 2 on an N–4/3 plot.

In contrast, the data for mx
2, the square of the long-range order parameter for the XY ferromagnet,

followed a single trend for both odd-N and even-N finite lattices. We experimented with various powers
of L for�a�third�term in�(5.2), and�we�found�that the�best�fit to the data was obtained�with�the�equa tion

mx
2(N) = mx

2(") + B2 N # 2/3 + B4 N # 4/3 (5.5)

Parameter Value Standard error

mx
2(") 0.2262 0.0024

B2 0.2634 0.0288

B4 0.2620 0.0812

Table 4. Curve fit results for (5.5), the

magnetization squared, mx
2 of the S = ½ XY

ferromagnet.

Fig. 3. Square of the spontaneous magnetization per vertex, mx
2, versus N, on an N–2/3 scale, for the S = ½ XY

ferromagnet on finite sc lattices. The curve represents the best fit of (5.5) to the data.
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Finite Lattice Generation
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Fig. 1. (a) This first diagram shows the 4×4 square tile, its edge vectorsL1 = (4, 0) andL2 = (0, 4), and 16B

the finite square lattice ofN = 16 vertices derived therefrom. (b) This second diagram shows two parallelogram

tiles, their respective pairs of edge vectors L1 = (4, 0) and L2 = (2, 4), and L1 = (2, 4) and L2 = (0, 8), and

16A the finite square lattice that can be derived from either parallelogram tile.

three distinct geometric criteria to indicate which of the many finite lattices would be good to use for the

diagonalization of the Hamiltonians of models such as the S = 1/2 XY ferromagnet and the S = 1/2

Heisenberg antiferromagnet. Of course, “the proof of the pudding is in the eating.” In other words the

real value of each finite lattice is determined after the Hamiltonian of the model has been diagonalized,

the physical properties computed, and the statistical weights of these properties calculated.

In Fig. 1, the well-known finite lattice based on the 16-vertex square tile is displayed as 16B.

Application of doubly periodic boundary conditions is represented here by identical labelling of vertices

on opposite edges of the founding square. In other words, all vertices that are labelled by the same letter

are one vertex. The less familiar finite lattice 16A is also displayed. Unlike 16B, lattice 16A can be

derived from either of two parallelogram tiles. The compact tile is defined by the edge vectors (4,0)

and (2,4) while the utlf tile is defined by the edge vectors (2,4) and (0,8). The letter labels demonstrate

that, upon applying doubly periodic boundary conditions to each tile, the same finite lattice, 16A, is

produced.

In 1997, some of us learned from a paper by Lyness et al. [7] that any finite lattice in any dimension,

D, can be generated and described by a D × D matrix in upper triangular lattice form (utlf). This

has been found of great benefit in three dimensions in generating, via a simple computer program, the

complete set of finite fcc lattices [8] and finite bipartite bcc lattices [9] over a chosen range of the number

of vertices of the lattices. For those interested in generation of finite lattices, details can be found in

papers by Lyness et al. [7] and in Stewart et al. [8].

©1999 NRC Canada
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Poor Tiles
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Grading Criteria for Tiles
Imperfection
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Grading Criteria for Tiles
Symmetry
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3. Geometrical criteria for accepting a finite lattice

Ultimately a finite lattice will be categorized as very good, good, indifferent, or unacceptable after it has
been tested in the process of estimating the physical properties of models like the spin one half XY
ferromagnet and the Heisenberg antiferromagnet. But before such physical tests are undertaken geomet-
rical criteria can be used to separate the promising finite lattices from the unpromising. In deciding
which finite sc�latti ces to�employ initially we�im posed�eac h of�the following criteria.

3.1. Nearest neighbours

In the infinite sc lattice each vertex has six nearest-neighbour vertices. Accordingly we discard as too
small any finite lattice that has less than six nearest neighbours per vertex. Thus the bipartite finite sc
lattice based on the 2 ! 2 ! 2 cube is discarded because in the finite lattice derived therefrom each vertex
has only three nearest neighbours.

The smallest bipartite lattice with six distinct nearest�neigh bours�per vertex has N = 14 vertices. On
the�other hand�there�are non-bipartite�finit e sc lattices of every�size from N = 7 upward with six nearest
neighbours per�verte x.

3.2. Cubicity

We label body diagonals�of a parent�paral lelepiped as d1, d2, d3, and d4 and the face diagonals as f1, ...,

Fig. 1. Bipartite finite simple cubic lattice 14A represented on a 4!4!4 vertex cubic portion of the unbounded

simple cubic lattice. The origin of the Cartesian coordinates of the unbounded simple cubic lattice has been
placed at the centre of this cube, and the orientation and scale of this usual three-vector coordinate system are

indicated by the coordinates that label four of the vertices. Each of the 64 vertices is labelled by one of the 14
scalar coordinates of the 14 vertex finite simple cubic lattice 14A.

Can. J. Phys. Vol. 75, 199750
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Grading Criteria for Tiles	
Cubicity
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Lattice Grades

11models�are given�in�Table s 8�and�9. The uncertainty of�the best-fitting�curve�to�the�somewhat scattered
finite-lattice�data�for n!

2 of�the�Heisenb erg antiferromagnet have�led us to omit grades for this property.
Also included are the symmetry, S, and imperfection, I, of each finite lattice. (We do not include the
cubicity because�of�the�ambiguit ies of�this�geometric al�property ).

We expect that those finite lattices with good grades for these two models will usually be effective
in�the�estimati on of�properties of�other�models.

Property that deviates

Lattice S I "o
XY mx

XY "o
HA

8A C2h 1 A B

10A Ci 0 A– B+

12A C2h 0 A+ B+

12B C2h 0 B+ A–

14A C3i 0 B+ B A–

14B Ci 0 B+ A

14C Ci 0 A– B+

16A* Oh 0 B+ B+ A–

16B* D2h 0 B+ B+ A–

16C* D2h 0 B+ B+ A–

16D C2h 0 B+ B+ A–

16E C2h 0 A+ B+

16F C2h 1 B B+

18A* D3h 0 A– A– A–

18B* C3i 0 A– A– A–

18C Ci 0 B+ B+ A–

18D C2h 0 B+ B+

18E C2h 0 A B+

18F C2h 2 B B+

20A Ci 0 A– A– A–

20B* Ci 0 A– B+ A–

20C* Ci 0 A– B+ A–

20D* Ci 0 A– B+ A–

20E C2h 0 A+ A B+

20F C2h 0 A– A+

20G C2h 1 B+ B+

22A Ci 0 A– B+ B+

22B Ci 2 A– B+ B+

22C Ci 0 A A–

22D Ci 0 B+ B+

22E Ci 2 B+ B+

24A C2h 2 A A– A+

24B D3h 2 A– A– A+

24C Ci 0 A– B+ A–

24D D2h 4 A– A

24E C2h 0 B+ B+

26A Ci 2 A+ A– A–

26B C3i 0 A– B+ A–

26C Ci 0 B+ B+

* The�fin ite�lattices in this set are�top ologically identical.

Table 8. Grades of even-N finite lattices based on the deviations of

properties of spin models computed on the last from the value
according to the corresponding best-fitted curve. We repeat the listing

of the symmetry, S, and the imperfection, I, of these finite lattices.
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Tile Comparisons
The Spin ½ XY Model
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Fig. 3. The horizontal coordinates are proportional to N−1/2 and are labelled by N . The vertical coordinates are

proportional to!m2x = m2x(N) − m2x(∞), wheremx is one of the components of the magnetization in the ground

state of the S = 1/2 XYmodel. The points within circles representm2x of topologically perfect finite square lattices,

and the points within the squares represent values of m2x for topologically imperfect lattices. The curve represents

our best fit to those points that are not outriders.

Deleting either the second or third term and (or) adding any further term of a low power of 1/L results

in a very bad estimate of m2
x(∞), sometimes negative!

Our best estimates of m2
x for the XY model, again using the same 16 lattices, is

m2
x(L) = 0.0960(15) + 0.117(17)N−1/2 + 0.131(16)N−1 (11)

As the total magnetization per vertex,m⊥, of theXYmodel is (m2
x +m2

y)
1/2, thenm⊥(∞) = 0.4381(35).

To complement the statistical weights in Table 2, Fig. 3 demonstrates graphically which finite square

lattices appear to be outriders. The vertical coordinates,!m2
x , are proportional tom2

x(N)−m2
x(∞) and

the horizontal coordinates are proportional to N−1/2. The curve represents scaling equation (11). The
discrete points represent the values ofm2

x on individual finite bipartite square lattices. Those points that

are centred in circles represent topologically perfect finite lattices while those points that are centred

in squares represent finite lattices with topological imperfections of 1 or 2. Note that those lattices that

were statistically determined to be outriders as far as energy was concerned also appear to be outriders

because they are not close to the curve.

Now we turn to the more familiar S = 1/2 Heisenberg antiferromagnet on the square lattice. For

this model we have computed and studied not only the ground-state energy and magnetization on all 27

of the finite square lattices, but also the energy of the first excited state and the spin–spin correlations

in the ground state.

©1999 NRC Canada
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Tile Comparisons
The Spin ½ Heisenberg Model
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Fig. 4. The horizontal coordinates are proportional to N−3/2 and are labelled by N . The vertical coordinates are

proportional to !ε0 = ε0(N) − ε0(∞), where ε0(N) is the ground-state energy of the S = 1/2 Heisenberg

antiferromagnet. The points within circles represent the ground-state energies of topologically perfect finite square

lattices, and the points within squares represent the energies of topologically imperfect lattices. The curve represents

our best fit to those points that are not outriders.

In Table 3, for the 20 best finite square lattices, we listed the ground-state and first-excited-state

energies per vertex, ε0(Nα) and ε1(Nα), one component of the staggered magnetization squared,

m2
x(Nα), and the second-, third-, and fourth-neighbour correlations. Fitting the appropriate finite-size

scaling equation, (7), to the data of the best 16 lattices our statistical analysis yields

εHA
0 (N) = −1.339 20(27) − 4.178(50)N−3/2 + 1.53(13)N−2 (12)

Figure 4 does for the energy of the S = 1/2 Heisenberg antiferromagnet what Fig. 3 does for the

magnetization of the S = 1/2 XY model. However, to show more clearly which are the better of the

larger finite lattices the range of the horizontal coordinates in Fig. 4 excludes lattices of less than 16

vertices. The horizontal coordinates are proportional to N−3/2 and are labelled by N . The vertical

coordinates are proportional to !ε0 = εHA
0 (N) − εHA

0 (∞). Once again we see that the same finite

square lattices are outriders.

Similarly, using (10), we estimate statistically m2
x , one third of the square of the staggered mag-

netization per vertex, m+. We could determine independently statistically that (10) is the right scaling
equation and we have estimated statistically that

©1999 NRC Canada
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Tile Comparisons
The Hubbard Model

14

3

for TDCA
N collected in Fig. 2 (full circles). For comparison

we also included the results for a finite t · ∆τ = 1/4
(open circles). This unextrapolated data actually lies
above the Heisenberg result of T/t=0.48. One clearly
sees that a proper scaling to ∆τ = 0 is necessary to obtain
both the correct qualitative and quantitative behavior of
TDCA

N (Nc). The full curves in Fig. 2 were obtained with
the scaling ansatz (2) using the ν for the 3D Heisenberg
model. It yields a linear scaling curve within our error
bars.
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Betts clusters, t"#=0

Bad clusters, t"#=1/4

Bad clusters, t"#=0

FIG. 2: Cluster size scaling of TN when U/t = 8 and t∆τ =
1/4 (open circles) and the result extrapolated to t∆τ = 0 (full
circles) as in Fig. 1.

To assess the value of Betts clusters, we also study
two bad clusters, 16Z and 26Z, identified in Table II.
Although these clusters are bipartite, they are highly im-

Nc "a1 "a2 "a3 Imperfection Cubicity

16Z ( 2, 0, 0) ( 0, 2, 0) ( 0, 0, 4) 7 1.209

26Z ( 1, 2, 3) ( 3, 3,-2) ( 3,-2, 3) 14 1.295

TABLE II: 3D cluster geometries, imperfection and cubicity
of two poor quality bipartite clusters.

perfect. Both are missing independent neighbors in the
first shell (each have 4; whereas a complete first shell
has 6 neighbors). As a result of the periodic boundary
conditions on the cluster, this causes the near-neighbor
fluctuations to be over estimated. As a result, the esti-
mates of TN from these clusters, shown Fig. 2 for a finite
t · ∆τ = 1/4 (open triangles) and for the data extrap-
olated to ∆τ = 0 (filled triangles), fall well below the
scaling curve established by the best cluster geometries
listed in table I. In general, in this and in other cal-
culations, we find that the less perfect clusters tend to
overestimate the effects of fluctuations.

Finally, Fig.3 displays the calculated antiferromagnetic

phase diagram obtained from the DCA and extrapolated
to ∆τ = 0 and Nc = ∞ (open circles with error bars).
For comparison, we included results from other methods:
The dynamical mean-field approximation (DMFA, full
circles), Staudt et al.[7] (full curve), second order pertur-
bation theory (SOPT, dotted curve)[11, 12], the Heisen-
berg model (dashed curve)[13] and the Weiss mean-field
theory for the Heisenberg model (dash-dotted curve). We
took J = 4t2/U for both Heisenberg calculations. The
results from Staudt et al. are reproduced with good accu-
racy, but with much smaller clusters. The DMFA result
is obtained through the methods described above when
Nc = 1. Both the DMFA and the Weiss mean field are
local approximations which neglect the effect of non-local
fluctuations. As expected, they agree in the strong cou-
pling regime, U > 12t = W (W is the bandwidth). Both
DMFA and SOPT are only accurate at small U/t, indi-
cating that non-local fluctuations are not important for
small U . At large U/t the DCA results for TN approach
the curve for the Heisenberg model, as expected. How-
ever, for intermediate and large values of U/W , the de-
viation between the present results and the mean-field
results is as large as 30% or more, indicating that the
effects of non-local fluctuations are significant.

0 5 10 15 20
U/t

0

0.2

0.4

0.6

0.8

T
/t

Weiss

Heisenberg

SOPT

Staudt

DMFA

DCA

FIG. 3: Antiferromagnetic phase diagram of the 3D Hubbard
model from our results and different approximations.

These methods may be extended to treat other order
parameters or cluster geometries. The Betts method se-
lects clusters to give good finite size scalings for local
quantities such as the magnetic moment on periodic clus-
ters. Additional considerations are required for non-local
order parameters such as d-wave superconductivity found
in the 2D Hubbard model[14]. The d-wave order param-
eter may be represented on a plaquette of four sites. The
best clusters for d-wave order have a complete set of in-
dependent plaquettes in each shell formed from neighbor-
ing plaquettes. Betts’ methods may also be generalized
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Comparison with Outside Results
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Table 4. Comparison of estimates of the energy per vertex, ε0, and magnetization per vertex,

m⊥ of the S = 1/2 XY magnet on the infinite square lattice at T = 0.

−εo m⊥ Method Ref.

0.5372 0.460 Variational 23

0.545 — Equation of motion 24

0.55154 — Perturbative spin wave 25

0.5543(1) — Quantum Monte Carlo 26

0.54883(1) 0.441(5) Green’s function Monte Carlo 27

0.548824(2) 0.437(2) Quantum Monte Carlo 28

0.54892 0.435 Coupled cluster 29

0.54769 0.43756 Second-order spin wave 30

0.54883(3) 0.43548(3) Series expansion 30

0.5494(3) 0.4349(3) Exact diagonalization on finite lattices 6

0.5488(1) 0.44(1) " 31

0.54886(6) 0.4381(35) " Present estimates

Table 5. Comparison of estimates of the energy per vertex, ε0, and the staggered magnetization

per vertex,m+, of the S = 1/2 Heisenberg antiferromagnet on the infinite square lattice at T = 0.

−ε0(∞) m+(∞) Method Ref.

0.6657(4) — Variational 32

0.6638 — Variational 33

0.66968 0.31 Coupled cluster 34

0.66934(3) 0.3075(25) Quantum Monte Carlo 35,36

0.669437(5) 0.3070(3) Series expansion quantum Monte Carlo 37

0.669442(26) 0.3077(4) Green function Monte Carlo 38

0.66999 0.3069 Third-order spin wave 39

0.66949 0.30686(10) Fourth-order spin wave 40

0.668(1) 0.33(3) t expansion 41

0.6696(3) 0.303(8) Series expansion 42

0.6693(1) 0.307(1) Series expansion 43

0.669(1) 0.325 Exact diagonalization on finite lattices 19

0.6513(8) 0.20(1) " 15

0.66960(14) 0.302(10) " Present estimates

5. Comparison of our estimates with estimates by other methods

Here we compare our estimates of the zero-temperature properties of the S = 1/2 XY model and

the S = 1/2 Heisenberg antiferromagnet on the macroscopic or infinite square lattice with published

estimates by other methods. Several of the papers describing results of other methods estimate only the

energy and long-range order so our Tables 4 and 5 list only these properties for the S = 1/2 XY and

Heisenberg antiferromagnetic models, respectively. Table 6 compares other properties.

We examine first, in Table 4, the estimates of the T = 0 properties of the XY antiferromagnet on

the infinite square lattice. Most of the energy estimates displayed are in the range 0.549 ± 0.004. Our

estimate agrees with the latest quantumMonte Carlo and series-expansion estimates to less than one part

in ten thousand. It is difficult in most methods and impossible in some methods to establish confidence

limits. We have done so by estimating each coefficient in each finite-lattice scaling equation using the

16 best finite lattices with and without the 17th best lattice, 28A. We define each of our confidence

©1999 NRC Canada
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