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An Illustrated Primer
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The Extended Hubbard Model 
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The Extended Hubbard Hamiltonian
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Spin & Charge Density Wave Phases

3

Spin Density Wave (SDW)
U ≫ 4V

Charge Density Wave (CDW)
U ≪ 4V
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Extended Hubbard Model in Two Dimensions
t=1, u=8, N=8, Half-Filled

Spin Density Wave Example



/165

0 1 2 3 4 5 6
v

-1

-0.5

0

0.5

1

Ch
ar

ge
 C

or
re

la
tio

n 
N

um
be

r f
or

 S
pa

ci
ng

 j

j=0
j=1
j=2

Extended Hubbard Model in Two Dimensions
t=1, u=8, N=8, Half-Filled

Charge Density Wave Example



/16

Hints of Complications in 1D
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mα =
√

Sα(π)/N, (5)

where α = CDW, SDW, or BOW. We have also studied
the charge stiffness constant, ρc. It is defined as the
second derivative of the internal energy per site, E, with
respect to a twist, φ,26

ρc =
∂2E(φ)

∂φ2
, (6)

under which the hopping term in the Hamiltonian (1) is
replaced by

kc(φ) = −t
∑

j,σ

(e−iφc†j+1,σcj,σ + h.c.). (7)

The spin stiffness constant, ρs, is defined by a similar
expression, with the hopping term now being replaced
by

ks(φ) = −t
∑

j,σ

(e−iφσc†j+1,σcj,σ + h.c.), (8)

with φ↑ = −φ↓ = φ. In the framework of the SSE
method, the estimators for the charge and spin stiffness
are given in terms of expectation values of squared wind-
ing numbers (see Appendix A).

III. RESULTS AT HALF-FILLING

As noted above, we have studied chains with N up
to 256 with periodic boundary conditions.27 Typically,
an inverse temperature of β = 2N was sufficient for the
calculated properties to have converged to their ground
state values, except in the case of N = 256, for which
β = 4N was needed for some quantities. In this section
we first discuss our evidence for the existence of a long-
range BOW phase, then our analysis of the continuous
BOW-CDW and SDW-BOW transitions for small (U, V ),
the discontinuous SDW-CDW transition for large (U, V ),
and finally our determination of the location of the multi-
critical point separating these transitions.

A. Existence of the BOW phase

Plots of the variation of the staggered susceptibilities
corresponding to the three different phases — CDW,
SDW, and BOW — show the existence of strong BOW
fluctuations in a region with V " U/2 in parameter space
where Nakamura predicted a BOW state. Fig. 2 is such
a plot for U = 4 and 1.7 ≤ V < 2.3. In a long-range
ordered phase (BOW, CDW), the corresponding χ(π) is
expected to diverge with increasing system whereas the
other two susceptibilities should converge to constants.
In the SDW phase there is no long-range order but alge-
braically decaying correlations of both SDW and BOW
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FIG. 2. The variation with V (at fixed U = 4) of the
staggered susceptibilities (CDW, BOW, and SDW, from the
top) in the neighborhood of the BOW phase predicted by
Nakamura (the vertical dashed lines show the predicted
SDW-BOW and BOW-CDW boundaries). The statistical
errors are typically of the order of the size of the symbols
(slightly larger for the N = 128 CDW at high V ). The scans
for N = 16 and 32 were obtained in single parallel tempering
simulations, whereas those for N = 64 and 128 consisted of
two and four non-overlapping runs, respectively.

nature; hence χSDW (π) and χBOW (π) should both di-
verge here, but the BOW divergence should be much
slower than in the long-ranged BOW phase. These be-
haviors are indeed seen in Fig. 2, with the susceptibilities
for SDW, BOW, and CDW dominating in turn as V is in-
creased. The BOW-CDW phase boundary can be quite
well resolved since it involves a standard second order
(continuous) phase transition. On the other hand, the
SDW-BOW boundary is more difficult to locate, for it in-
volves a Kosterlitz-Thouless transition in which the spin
gap opens exponentially slowly as one enters the BOW
phase,16 resulting in only a slow decay of the staggered
SDW susceptibility in the BOW phase for the system
sizes accessible in our work.

Fig. 3 shows ln[χα(π)] and ln[Sα(π)] versus ln[N ] for
the parameters (U, V ) = (4, 2.14) for which the ground
state should be inside the BOW phase. We find that
both χBOW (π) and SBOW (π) diverge strongly with sys-
tem size, whereas the structure factor and susceptibility
corresponding to CDW have a maximum and then de-
crease with system size for large N . The SDW structure

4

1D Phase Diagram

P. Sengupta, A. Sandvik, and D. Campbell, arXiv:cond-mat/0102141 (2002)
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Bond Ordered Wave Phases

8

Bond Spin Density Wave (BSDW) Bond Charge Density Wave (BCDW)
or

Bond Ordered Wave (BOW)
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1D Phase Diagram Expanded

9

(x!!1/2), the finite-size effect from the irrelevant field "the
deviation from the linearized dispersion relation# becomes
larger. In this case, we need an extrapolation of the critical

point to make the phase diagram. In the U/t→$ limit, the

transition point for the charge-gap phase is given by Vc /t

!2, because it corresponds to the XY-Néel transition in the
S!1/2 XXZ spin chain.60,61 For the U/t"1 region, the ex-
trapolated phase boundary flows into the point (U ,V)

!($ ,2t) as we expected. In order to check the consistency
in the finite-U region, we calculate the following averaged

scaling dimension:

x!1#3x!2

4
!
1

2
. "57#

Except for the large-V region, the extrapolated value be-

comes 1/2 with error less than 4%, as shown in Fig. 17.

Thus, the universality class of the transition is considered to

be a BKT-type.

On the other hand, for V/t"1 region, since the finite-size
effect is too large, it is hard to perform the systematic ex-

trapolation. However, the phase boundary appears to flow

into the exact transition point Uc!4t in the V/t→$ limit as

the system size is increased. Now let us review how the

critical point of the charge-gap phase in the V/t→$ limit is

derived.23 The charge gap is defined by

%!!E"N#1 ##E"N$1 #$2E"N #. "58#

At quarter-filling, E(L/2)!0. If one electron is add to this,
then the energy is E(L/2#1)!U . Conversely, if one elec-

tron is removed, two free holes appear, then they have a

kinetic energy E(L/2$1)&$4t cos('/L). Therefore, the
critical point for the charge-gap phase is given by Uc!4t in
the thermodynamic limit. We should note that the critical

point in the U/t→$ and V/t→$ limits are given by a com-

FIG. 16. Phase diagram of the 1D EHM at quarter-filling for the

V/t%0 region. The phase boundary between the TL liquid and the
4k F-CDW phases is determined by the level crossing of x!0

!4x!2 in L!8,12,16 systems. The critical points in the strong-
coupling limits are Vc /t!2 and Uc /t!4, respectively.

FIG. 17. Scaling dimensions given by Eq. "57# on the BKT line.
The extrapolated value becomes 1/2 with error less than 4%.

FIG. 15. Phase diagram of the 1D EHM determined by the data

of the L!12 system at half-filling for "a# X/t!$1/4, "b# X/t!0,
and "c# X/t!1/4 (CDW "SDW#, charge "spin#-density wave;

BCDW "BSDW#, bond-charge "spin#-density wave; SS "TS#, sin-
glet "triplet# superconducting phase; PS, phase-separated state). The
asymptotic phase boundaries for the PS are given by Eqs. "55# and
"56#.

16 388 PRB 61MASAAKI NAKAMURA

M. Nakamura, Phys. Rev. B 61, 377 (2000) 
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Negative U & V Behavior

10

Phase-Separated State (PS)
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Superconducting Phases

11

Singlet Superconducting Phase (SS)
or

Intra-site Cooper Pair

Triplet Superconducting Phase (TS)
or

Inter-site Cooper Pair
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Summary of Expected Phases

12

SDW < ni,↑ − ni,↓ >

CDW < ni,↑ + ni,↓ − 1 >

BOW < c†i+j,σci,σ >

SS < c†i+j,↑c
†
i+j,↓ci,↑ci,↓ >

TS < c†i+j,σc†i+j+1,±σci,σci+1,±σ >



/16

Exact Results for a Dimer

a challenge between the hopping of the Cooper pairs between different lattice
sites (similar as in Refs [36], [37]) and intersite Cooper pair interactions.

2 Intrinsic interactions

The eigenvalue problem for the dimer Hamiltonian (2) can be solved exactly
when start from the vectors |n1,↑, n1,↓; n2,↑, n2,↓〉 (ni,σ = 0, 1; i = 1, 2; σ =↑, ↓)
forming the Fock basis (cf. also Refs [35, [54], [55])

|0〉 = |0, 0; 0, 0〉,

|11〉 = |1, 0; 0, 0〉,
|12〉 = |0, 1; 0, 0〉,
|13〉 = |0, 0; 1, 0〉,
|14〉 = |0, 0; 0, 1〉,

|21〉 = |1, 1; 0, 0〉,
|22〉 = |1, 0; 1, 0〉,
|23〉 = |1, 0; 0, 1〉,
|24〉 = |0, 1; 1, 0〉,
|25〉 = |0, 1; 0, 1〉,
|26〉 = |0, 0; 1, 1〉,

|31〉 = |0, 1; 1, 1〉,
|32〉 = |1, 0; 1, 1〉,
|33〉 = |1, 1; 0, 1〉,
|34〉 = |1, 1; 1, 0〉,

|4〉 = |1, 1; 1, 1〉.

(4)

The basis vectors (4) have the form |nβ〉 where n =
∑

i,σ ni,σ(= 0, 1, 2, 3, 4). The
second index β (if necessary) enumerates the vectors belonging to the subspace
of a given n. The exact solution of the dimer eigenvalue problem HD|Eα〉 =
Eα|Eα〉 can be obtained with the use of a standard procedure. We obtain

E1 = 0; |E1〉 = |0〉,

E2 = −t; |E2〉 = 1√
2
(|11〉 + |13〉),

E3 = t; |E3〉 = 1√
2
(|11〉 − |13〉),

E4 = −t; |E4〉 = 1√
2
(|12〉 + |14〉),

E5 = t; |E5〉 = 1√
2
(|12〉 − |14〉),

E6 = J (2); |E6〉 = 1√
2
(|23〉 + |24〉),

E7 = U ; |E7〉 = 1√
2
(|21〉 − |26〉),

E8 = C + U+J(2)

2 ; |E8〉 = a1(|21〉 + |26〉) − a2(|23〉 − |24〉),

E9 = −C + U+J(2)

2 ; |E9〉 = a2(|21〉 + |26〉) + a1(|23〉 − |24〉),
E10 = J (1); |E10〉 = |22〉,
E11 = J (1); |E11〉 = |25〉,

(5)

E12 = t + U + J (1) + J (2); |E12〉 = 1√
2
(|31〉 + |33〉),

E13 = −t + U + J (1) + J (2); |E13〉 = 1√
2
(|31〉 − |33〉),

E14 = t + U + J (1) + J (2); |E14〉 = 1√
2
(|32〉 + |34〉),

E15 = −t + U + J (1) + J (2); |E15〉 = 1√
2
(|32〉 − |34〉),

E16 = 2(U + J (1) + J (2)); |E16〉 = |4〉

4
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4

B. Grabiec, S. Krawiec, M. Matlak, and Z. Szafrana, arXiv:cond-mat/0511329 (2005)
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Exact Results for a Dimer
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H(1)
D = E2P2 + E4P4 = −

t

2
[na

1(1 − na
2 −

nb
2

2
) + na

2(1 − na
1 −

nb
1

2
)]

−
t

2

∑

σ

[a+
1,σa2,σ + a+

2,σa1,σ], (15)

H(2)
D = E3P3 + E5P5 =

t

2
[na

1(1 − na
2 −

nb
2

2
) + na

2(1 − na
1 −

nb
1

2
)]

−
t

2

∑

σ

[a+
1,σa2,σ + a+

2,σa1,σ], (16)

H(3)
D = E6P6 = −J (2)[S1

z · S2
z −

na
1n

a
2

4
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J (2)

2

(

S1
+ · S2

− + S1
− · S2

+
)

(17)

H(4)
D = E7P7 =

U

4
[nb

1(1 − na
2 −

nb
2

2
) + nb

2(1 − na
1 −

nb
1

2
)]

−
U

2
[b+

1,↑a
+
1,↓a2,↓b2,↑ + b+

2,↑a
+
2,↓a1,↓b1,↑], (18)

H(5)
D = E8P8 =

{

−
J (2)

2
+ [

J (2)(U − J (2))

4C
−

2t2

C
]

}

[
−→
S1 ·

−→
S2 −

na
1n

a
2

4
]

+
1

4
[U + C +

(U2 − (J (2))2)

4C
][b+

1,↑a
+
1,↓a2,↓b2,↑ + b+

2,↑a
+
2,↓a1,↓b1,↑]

+

{

U

8
+

1

8
[C +

(U2 − (J (2))2)

4C
]

}

[nb
1(1 − na

2 −
nb

2

2
) + nb

2(1 − na
1 −

nb
1

2
)]

+

{

−
t

2
−

t(U + J (2))

4C

}

∑

σ

2
∑

i=1

[a+
i,σbi,σ + b+

i,σai,σ], (19)
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]
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a
2

4
]

+
1

4
[U − C −
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+
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2,↑a
+
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+

{

U
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1
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[C +
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]
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2 −
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2

2
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2(1 − na
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1

2
)]
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−
t

2
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t(U + J (2))
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}

∑

σ
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i,σai,σ], (20)

H(7)
D = E10P10 + E11P11 = 2J (1)[S1

z · S2
z +

na
1n

a
2

4
] (21)

6B. Grabiec, S. Krawiec, M. Matlak, and Z. Szafrana, arXiv:cond-mat/0511329 (2005)
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What We Hope to See

15

Flux Ordered Wave
(Andrew)

Spin Density Wave
(Chris)
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